[image:]Flowcharts

(Continued on the following page)
(Continued)
[image:]

Car Data Matching Report
1 Initial Data Analysis and Strategy Development
Our team began by analyzing two primary datasets: `autoswithout.csv` containing vehicle listings with unstructured name fields, and `model_and_brand.csv` containing standardized brand-model relationships. Early observations indicated that inconsistency in the "name" field, such as variations in brand or model names, irregular capitalization, and special characters, posed significant challenges to accurately matching vehicle information across the datasets. We also found the brand-model relationships highly inconsistent, ranging from names that included neither brand nor model, to those containing multiple brands or models. This complexity required a repeated matching process to identify and isolate unique brands accurately.
2 Resolving Matching Challenges
To solve these problems, we developed a structured approach consisting of three main phases: Data Standardization, a Multi-Pass Matching Strategy, and Special Case Handling. This multi-phase workflow allowed us to address issues progressively, refining matches with each pass and ultimately increasing our accuracy and reducing ambiguities.
2.1 Data Standardization
We standardized all entries to ensure consistency, starting by converting text to lowercase, splitting the name fields by underscores, and removing special characters. This process enabled easier component isolation, ensuring reliable matching criteria. Initial values for "brand" and "model" columns were set to "NA" to track unmatched entries across phases.
Besides, given that many entries had varied forms of brand names (e.g., "Mercedes" and "Benz" appearing separately), we standardized these variations. We expanded abbreviations and corrected common variations to reduce inconsistencies that could prevent accurate matches.
2.2 Multi-Pass Matching Strategy
To address unique matching requirements, we developed a multi-pass approach:
First Pass: Direct Brand and Model Matching
We first focused on exact brand matches within each entry’s split components. Unique matches were assigned to their corresponding brands. Next, we want to infer the brand information from models. We then matched car models, assigning the model only when a unique match was found. If no match or multiple matches occurred, the entry was marked as "NA" to prevent incorrect assignments. This process ensured that only precise matches were retained, with unmatched entries flagged for further review.
Second Pass: Model-Based Brand Inference
Entries without direct brand matches were re-examined by inferring the brand from model names. When a model matched a brand, the corresponding brand was assigned. However, if multiple models or brands were found, or if the inference was ambiguous, the entry was set to "NA" to prevent misattribution. This ensures that only unique and confident matches are retained, while ambiguous cases are flagged for further review.
2.3 Special Case Handling
A subset of entries presented additional challenges that required brand-specific processing. We created standardization rules to handle variations in abbreviations and series identifiers, ensuring consistent mapping of brands and models.
2.3.1 Series Identification
We discovered that BMW's model names were too specific (e.g., "316i") while the given model list used broader categories (e.g., "3er"). To address this, we implemented pattern matching for BMW’s numeric series (e.g., "1er, " "3er, " "5er") and added special handling for the X, Z, and M series vehicles. This allowed us to correctly identify the model even when it included only numeric or letter indicators.
Similarly, we handled following brands:
Mercedes-Benz: Created specific handlers for class designations (e.g., "A-Class", "C-Class") and added logic to skip the brand name component due to complex name formats.
Ford: Added Ford models like "C-Max" and "S-Max" to prevent misclassification.
Mazda: Developed custom logic for Mazda’s series (e.g., "Mazda3", "Mazda6") to handle both numeric and letter-based model names.
Honda: Implemented recognition for Honda's "CR" series to ensure correct model classification.
Volkswagen (VW): Standardized entries by implementing handlers for cases where "VW" appeared as an abbreviation.
2.3.2 Mercedes-Benz Class Processing Prefix Matching
We encountered an issue where some car names (e.g., "BMW316i") did not directly match the expected "BMW" brand due to the lack of a space between the brand and model. To address this, we implemented a pattern-based approach to detect entries starting with the prefix "bmw." Similarly, we handled the "golf" model, "vw" and "mazda" using the same logic.
2.3.3 Summary
All these specialized handlings for common patterns across brands helped us accurately resolve ambiguous entries, minimizing errors due to inconsistencies in naming.
3 [image: 横向组织结构图(1)]Code Flow and Logic

image2.png
Step 5: Special model handling
(Re-examine NA)

l

|

|

l

BMW
Model starts with a
special number/letter

Ford
Model starts with a
special letter

Mazda
Model starts with
special number/letter
<1356cx mxrx>

Mercedes_Benz
Model starts with a
special letter

Honda
Model starts with
special letters.

<13567mxz> <cs> <ceamsbvg> <er>
Y
Step 6: Check for pattern-based matches in remaining NA entries
Take out the data of which both brand and model
are currently NA
Mercedes_Benz BMW = -
The first letter in name The first letter in name Nmi!:m i Volkswagen Volkswagen

is & special lotter is a special letter (i i Name contains Name starts with
<eamsbvgs <13579> W golf”

Mazda
Name starts
with "mazda"

Y

Step 7: Final attempt to match brands in remaining NA cases

d

If there are two identical brands appeared in the name,
do another brand matching

return NA

Step 8: Output the final results and

Summarize the number of unmatched brands and models

image3.png
Lowercase the character
Step 1: Standardize and preprocess the Name Field

Split the 'name' column

Step 2: Clean and standardize brand names

Direct brand matching
Step 3: Direct Brand Matching and Model

Matching

Direct Model Matching

The model column

Only one model

The brand appears can be matched

exactly once in the

string The model column
Others marked as NA

No model present in
Brand-based model , p. ,
, the string within the
inference , The brand appears
split column The model column

more than once in

, marked as NA
the string
No brand appears The model column
in the string marked as NA

More than one brand
The brand column

marked as NA

Step 4: Interactive Matching

present in the string —
between Model and Brand

within the split column

autoswithout The brand column

Only one brand
The model appears Y can be matched
exactly once in the
Model-based string The brand column
: Others —
brand inference . marked as NA
No brand present in

the string within the

split column The model appears The brand column

more than once iIn ——

T

, marked as NA
the string
No model appears The brand column
in the string marked as NA
Step 5: Second matching - handle Standard; o identif . T Ass ” del based ¢ identif
specific cases for NA' model andardize series identifiers (if brand appears in 'split' column) ssign appropriate model based on series identifier

Match Mercedes-Benz classes and BMW series based on first character/number

Step 6: Third matching: check for remaining Handle Volkswagen VW abbreviation cases; Handle cases where name starts with 'vw'

specific cases with 'NA' entries for model
and brand

Handle cases where name starts with 'bmw'

Handle Golf models (always Volkswagen)

Step 7: Final attempt to match brands in remaining NA cases

Step 8: Output the final NA results to check the remaining rows without brand/model information

image1.png
Load required datasets

Step 1: Standardize "Name"

| l

Convert to Split names by Initialize brand and
lowercase underscore model
.)
Y
Step 2: Clean and standardize brand
names(Aim at special cases)
Replace "mercedes" Replace "alfa” to - Rel‘l“ce" Delete special
{0 "mercedes_benz" walls romeo” freelander” to characters
- "land_rover" 21./%

~

Step 3: First Pass - Direct brand & model matching

hether it can be

Yes uniquely matched

Match the unique Put NA first and wait for
brand/ model further processing

| I
i

Step 4: Second Pass - Model-based brand inference

For cach item in name_split:
sum judgel (check if any part matches a model)
& judge2 (check if any part matches a brand)

um (judge2) >
Yes No-
um(judge2)=t
Yes
sum(judge)=
I/Yes No

Push the brand backwards
through the unique mod

